“To Join Warrior Maven Gold AI& CyberWar CircleCLICK HERE
Warrior Video Above: Army’s New Fast-Attack Vehicle Changes Ground-Recon strategy
By Charlie Gao,The National Interest
Ever since the development of stealth technology for aircraft, many different systems have been advertised as “stealth killing.” One of the more innovative solutions is the Russian Struna-1/Barrier-E bistatic radar system developed by NNIIRT, a division of the Almaz-Antey Joint Stock Company. Almaz-Antey is the premier air-defense and radar manufacturer in Russia; they make the Tor, Buk and S-400 anti-aircraft systems, as well as their respective search radars. The Struna-1 was originally developed in 1999. A further evolution of Struna-1, the Barrier-E system was later showcased for export at MAKS 2007. While it is not part of Almaz-Antey’s online catalog, it was shown alongside other radars at MAKS 2017. The system is rumored to be deployed around Moscow.
The Struna-1 is different than most radars in that it is a bistatic radar, meaning it relies on the receiver and transmitter of the radar to be in two different locations as opposed to conventional radar technology where the receiver and transmitter are located in the same location. Normal radar systems are limited by the inverse fourth power law. As the radar target goes further away from the transmission source, the strength of the radar signal decays as per the regular inverse square law. However, radar detection works by receiving reflections of the radar signal. With a conventional radar, this results in the received signal being four times weaker than that put out. Stealth works because at a distance, an aircraft can mitigate its radar returns to be small by scattering them and absorbing them using radiation-absorbent materials. This degrades the quality of the radar track so it is harder to distinguish precise information about an aircraft.