Distinguish and destroy approaching enemy fire in a more effective and integrated fashion than existing systems can, industry developers explained.
As a way to respond to and anticipate evolving Army requirements, BAE is engineering and testing a 3-Dimensional Advanced Warning System, or 3DAWS, which integrates ultraviolet sensor technology from the Common Missile Warning System, or CMWS, with an RF-Tracker to discern whether an approaching object is, in fact, an enemy threat, BAE Developers said. CMWS sends out a flare to divert enemy fire off course, and the RF-Tracker uses radio frequency to precisely assess the nature of a particular threat.
“This detects threats in a first-encounter scenario. We want our missile warning system to see everything that can possibly be a threat to them – we want to confirm that something is a threat before it can harm the aircraft,” Cheryl Paradis, Director of Threat Management Solutions, BAE Systems, told Scout Warrior in an interview.
Using a passive missile warning system and semi-active radar from a helicopter as an adjunct to CMWS, 3DAWS aims to provide identification, tracking and cueing for helicopters in high-threat areas.
Traveling at the speed of light, electromagnetic radar signals, or “pings,” are sent forward to bounce off an approaching enemy object; the return signal is then analyzed as a way to determine the shape, size, distance and speed of an approaching threat. Since the speed of light is a known entity — and the time of travel of the signals is also quantifiable — a computer algorithm is then able to quickly determine the distance of an object. The semi-active radar used by 3DAWS’ 3D-Tracker uses this technology to assess the precise nature and distance of enemy fire as part of an effort to give helicopter crews timely information about incoming attacks.
For instance, the new system seeks to identify and help intercept or destroy high-threat attacks such as enemy RPGs, MANPADS — or heat-seeking shoulder-fired weapons – and various kinds of rockets and missiles. Pentagon threat-assessment analysts have consistently expressed concern about the expanding proliferation and improving targeting technology of shoulder-fired weapons.
Accordingly, the rapid pace of emerging threats to helicopters is requiring aircraft to engineer more advanced countermeasures; heat seeking missiles, longer-range precision attack weapons and enemy radar systems make helicopters much more vulnerable than they have been in recent years. Increasing time needed for a decision cycle, by knowing the nature of approaching fire more precisely at greater ranges, vastly increases a helicopter crew’s ability to make adjustments, respond with offensive fire and implement the appropriate protective countermeasure.