On April 18, Moscow announced that it would feature its Uran-9 robot-tanks in its military parade celebrating the seventy-third anniversary of the defeat of Nazi Germany. The compact Uran-9 bristles with a 30mm cannon and anti-tank missiles—and it is of course, unmanned. The defense ministry also periodically insists that it will develop an unmanned version of its new T-14 Armata main battle tank.
Curiously, Moscow has been developing robot-tanks for nearly ninety years. The Soviet Union’s first tanks were French FT-17 light tanks captured from White Russian forces. In 1929, an FT-17 was rigged with a simple MOST-1 radio system, allowing it to follow three simple commands—stop, turn left or turn right—while crawling forward at 2.5 miles per hour. Soviet technicians tried do one better by installing a more sophisticated command system on seven T-18 tanks, a domestically built version of the FT-17 with a new turret.
Being able to move the tank into danger without exposing the crew was promising. But the command crew, observing from up to a mile away, could have a difficult time gauging the terrain the robot tank was driving through. One must remember that tanks of the era were highly prone to breakdowns traversing rough terrain. Trials in 1933 found that the robot TT-18s had a low weight (only six tons) and narrow tracks, leaving them lurching left and right across the battlefield whenever they encountered difficult terrain. Moreover, the effective range of the radio system was only 500–1,000 meters, even less in inclement weather.
More importantly, how could the drone tank’s operators, hundreds of meters away, aim weapons with any degree of accuracy? Although Soviet inventor Leon Theremin developed a 100-line television in the mid-1920s, the technology was far from the sort of higher-resolution remote video feeds today’s drone operators rely upon.