The Army is testing emerging next-generation ground combat vehicle sensors using computer algorithms and artificial intelligence to identify, target and destroy enemy tanks, drones and incoming fire, service officials said.
By Kris Osborn
The technologies now being tested, currently in prototype form, are being engineered for the yet-to-be-built future fleet of Army Next Generation Combat Vehicles to surface in coming years. Equipping Army combat vehicles with an ability to conduct mechanized vehicle operations in a massive, full-scale ground war against a near-peer adversary is a fundamental priority in the rationale for creating this technology.
The concept is to use what Army weapons developers call “multi-function” sensors which not only help vehicle crews find and destroy enemy targets at greater distances – but also simultaneously provide 360-degree cameras around the exterior of a vehicle to more quickly locate threats or enemy attacks.
The new sensor technology, to integrate and test on actual vehicle platforms by next year, is designed to increase situational awareness by using algorithms and computer automation to help soldiers find targets or areas of combat significance; technologies include more narrow-beam thermal sights for long range targeting along with closer-in, vehicle-surrounding electro-optical cameras able to quickly detect approaching enemy drones and incoming fire, Gene Klager, Deputy Director, Ground Combat Systems Division, Night Vision and Electronic Sensors Directorate, told Warrior in an interview. Klager’s unit is part of the Army’s Communications, Electronics, Research, Development and Engineering Center (CERDEC).
“We are developing algorithms for infrared search and track – we have a passive way to detect and track we would then hand off the target location to a countermeasure system, Klager said.
Using multi-pixel focal plane array technology and infrared detection, the sensors in development are designed for what Klager called Hostile Fire Detection, or HFD; computer automation, or algorithms created to help organize and communicate incoming sensor data, then assists a human combat vehicle operator in locating targets and significant objects such as approaching enemy drones.
“We are looking at things like Hostile Fire Detection. You really cannot expect a user to be looking at all these cameras at once. Sensors can look around a 360-degree area all the time. Hostile fire is automatically detected and operators are cued so they have the option to respond, look away or record the event,” Klager added.