Two hundred years ago a skull and crossbones flag on the ocean signaled an imminent threat. Now, those who defend and make their living at sea face a new lawless and unpredictable threat: cyberattacks.
Internet of Things: Maritime Vulnerabilities
When it comes to cyber threats, industry and military experts agree: U.S. maritime operations are vulnerable.
“As we have seen from recent incidents,” explained Captain Jason Tama of the United States Coast Guard, “the maritime industry’s growing dependence on continuous network connectivity and converging layers of information and operational technology make it inherently vulnerable to cyber threats.”
Cpt Tama identifies the transition to the Internet of Things (IoT) approach as a major source of that vulnerability. IoT is an information technology term that describes a system of devices or of self-contained systems that are connected and able to communicate over a single network. This connectivity is achieved largely by the introduction of firmware into vessel and onshore hardware systems. According to the Institute of Electrical and Electronics Engineers, firmware refers specifically to the “combination of a hardware device and computer instructions or computer data that reside as read-only software on the hardware device.”
Internet of Things: Maritime Advancements
The addition of firmware and transition to an IoT system does represent an advancement in the industry. As Hiekata et. al explain in their paper for theJournal of Marine Science and Technology, when the hardware components of a ship that previously would have operated independently – and offline – are equipped with monitoring software sensors, or firmware, it exponentially increases the information that operators have about their ship at any given moment.
Engine & Power Monitoring
For example, in an IoT environment, firmware allows for the constant monitoring and collection of data on hardware such as engines and auxiliary power units. The data produced by this monitoring is then stored and analyzed on shore. There, software algorithms are able to build a complete picture of a how the ships engine an auxiliary power units should be functioning at any given time and that allows for near-instant detection of abnormal activity or conditions. Near-instantaneous detection gives the crew a high chance of performing maintenance before the issue becomes critical.
Hiekata et. al point out that along with remote detection a networked ship allows for remote repair, at least in some circumstances. Therefore, IoT ships have a reduced number of emergency stops and length of recovery periods.