Warrior Maven Video Special Above; WATCH – “Firing a 30mm Cannon” – Stryker & Apache Chain Gun
By Dave Majumdar,The National Interest
With the U.S. Air Force considering the future makeup of its force structure, it is a good time to look at the evolution of stealth starting with the Lockheed Martin F-117 Nighthawk. That aircraft was retired in 2008, but would the F-117 still be useful today?
The answer is that against most mid-range threats like Iran, absolutely. But against higher-end threats like Russia or China, not so much. Technology has advanced since engineers first dreamed up the F-117 “stealth fighter” concept.
(This first appeared several years ago.)
Developed in the 1970s and declared operational in complete secrecy in 1983, the F-117 ushered in a new era that would enable the United States to dominate warfare for decades to come. Ironically, the equations that ultimately enabled the United States to develop the Nighthawk have their origins in the Soviet Union with a paper titled Method of Edge Waves in the Physical Theory of Diffraction. An obscure Russian scientist by the name of Pyotr Yakovlevich Ufimtsev wrote the paper in 1962. While the Soviet Union more or less dismissed Ufimtsev’s work as being wildly impractical, Lockheed Skunk Works engineer Denys Overholser saw potential in the Russian physicist’s equations.
Overholser’s work resulted in a concept that many at the Skunk Works—including the legendary Kelly Johnson—derisively called the Hopeless Diamond. But soon it became apparent that the ungainly diamond shape was incredibly effective at reducing an object’s radar cross section. As such, the Pentagon immediately awarded Lockheed a contract to develop a demonstrator called the Have Blue as part of its Experimental Survivable Testbed (XST) program. The Pentagon was forging ahead full steam to defeat the Warsaw Pact’s increasingly potent air defenses at the time. That was because it was increasingly apparent that NATO air forces would suffer horrific losses if the Cold War turned into World War III.