Video Above: Northrop Grumman& Eastern Shipbuilding Group Build New Coast Guard OffShore Patrol Cutter
What Will the Future of Biological Warfare Look Like?
Army scientists are working with cutting-edge academics at MIT to refine a new generation of sensing technologies to instantly detect hazardous materials or toxins in the atmosphere.
By Kris Osborn, Warrior Maven
(Washington, DC) When fast-advancing infantry clear buildings and face multiple angles of incoming enemy fire, they know how best to adjust to or counterattack against enemy bullets based on extensive training, yet what about non-kinetic attacks invisible to human eyes or ears? Army futurists and combat developers are of course increasingly widening their scope to prepare for chemical and biological attacks to a greater degree, given advances in modern science and the nefarious tactics potentially employed by adversaries.
With these kinds of challenges in mind, Army scientists are working with cutting edge academics at MIT to refine a new generation of sensing technologies inspired, informed, and shaped by naturally occurring biological phenomena designed to instantly detect hazardous materials or toxins in the atmosphere.
While still years away from potential deployment, Army Research Office scientists and academics have demonstrated a massive breakthrough by combining cellulose with a biologically-based protein-secreting yeast to identify specific materials in the air.
“Our premise was to engineer living systems like cells or bacteria to use novel materials that could be used in a non biological circumstance,” Dawnee Poree, Program Manager, Army Research Office, Army Research Laboratory, Combat Capabilities Development Command, Army Futures Command, told The National Interest in an interview.
Should potentially invisible chemical or biological agents be released into a combat area to injure, cripple, disable or even kill soldiers, a specially engineered, biologically inspired synthetic material could alert forces of the danger, therefore enabling an opportunity for soldiers to put on masks, use filters or take other defensive measures. The mixture of materials, called Symbiotic Culture of Bacteria and Yeast, is cellulose embedded with enzymes being engineered through an Army partnership with MIT and Imperial College London. Yeast can be directly into the cellulose which can, according to an Army Research Laboratory essay, be “used to purify water for soldiers in the field or make smart packaging materials that can detect damage.”