(Washington, D.C.) Simply seeing, tracking or finding an attacking hypersonic missile is of course a crucial element needed for defense, yet it is simply not enough. Threat information of a maneuvering, high-speed missile transiting between radar fields of regard must not only be tracked, but also processed and communicated.
Crucial data such as information about the flight trajectory needs to be organized, processed, sent through command and control and ultimately given to an interceptor or countermeasure of some kind. How can this happen? Can it happen fast enough to stop a hypersonic threat?
“There’s a tremendous amount of data that comes out of that space. How do you effectively utilize that data in terms of integrating that with your weapon?” Mike Ciffone, director, Strategy, Capture & Operations, OPIR & Geospatial Systems, Northrop Grumman, told reports at the SMD Symposium.
Hypersonic Weapons: Processing Satellite Data
There are several ways that the Pentagon, Missile Defense Agency and industry partners are working to accomplish this in a matter of seconds, to give defenders an opportunity to actually knock out a hypersonic weapon.
“One method is obviously data fusion and doing what fusion implies, I need to get that data that comes from the satellites down to the ground and to weapons as quickly as possible. A method of doing that is potentially processing some of that data in real time to a weapons database and transfer that data from the satellite system down to the weapon,” Ciffone said.
Some of the data processing, for instance, can potentially be AI-enabled and also performed at the point of data receipt, essentially wherever the incoming sensor data first arrives.
Computer processing is becoming much faster and of course AI enabled, a series of technical breakthroughs which enable incoming sensor data to be instantly analyzed, organized, assessed and streamlined. With this, key points, moments or objects of relevance can be found and sent to commanders at speeds exponentially faster than what may have previously been possible.