Imagine the sudden revelation of a weapon that can suddenly go six times faster than its predecessors. The shock of such a breakthrough system would turn an entire field of warfare on its head, as potential adversaries scrambled to deploy countermeasures to a new weapon they are defenseless against. While a lull in great power competition delayed the impact of this new technology, the so-called “supercavitating torpedo” may be about to take the world by storm.
During the Cold War, the Soviet Union placed a heavy reliance on its submarine fleet to negate America’s advantage in naval forces. The U.S. Navy was not only tasked to help protect the flow of reinforcements into Europe in the event of World War III, it also threatened the Soviet Union directly and would have hunted down and sunk her ballistic missile submarines. The USSR at first used sheer numbers of diesel electric submarines, then more advanced nuclear attack submarines, to whittle down the odds.
One of the most innovative underwater weapons developed by the Soviet Union was the VA-111 Shkval [6] (“Squall”) supercavitating torpedo. Highly classified, Shkval was virtually unknown before the end of the Cold War and only became common knowledge in the mid-1990s. Powered by a rocket engine, it was capable of astonishing speeds of up to 200 knots an hour. But in a world where physics ensured most ships and underwater weapons topped out at 50 knots, how did Russian engineers accomplish such a breakthrough in speed?
Traditionally, torpedoes use propellers or pumpjets for propulsion. Shkval, on the other hand, uses a rocket engine. That alone is enough to make it fast, but traveling through water creates major drag problems. The solution: get the water out of the path of the torpedo. But how, exactly does one get water of the path of an object in the middle of an ocean?